接近100%利用率!全固态锂硫电池又迎来新突破
近日,美国阿贡国家实验室徐桂良研究员、Khalil Amine教授等人在Science上发表了题为“Halide segregation to boost all-solid-state lithium-chalcogen batteries”的论文,报道了在各种含卤素的固态电解质和高能量硫族化合物正极材料之间,通过超高转速(UHS)混合过程中的机械化学反应实现的界面处卤化物的普遍分离现象。
具体看来,受混合卤化物钙钛矿太阳能电池中光诱导相分离的启发,研究人员观察到在一系列含卤素的SSEs和高能量硫族(S、Se、SeS2、Te)正极材料之间,通过2000 rpm的超高转速混合实现了普遍的卤化物分离。
UHS混合产生的热冲击和剪切破碎的协同效应,使得在混合过程中能够诱导机械化学反应,从而实现从含卤素的SSEs中分离卤化物,并在正极颗粒上均匀沉积。这种结构增强了电荷传输动力学,提高了界面稳定性,并减轻了固态电池的机械故障。
使用低温透射电子显微镜和同步辐射X射线衍射和光谱技术证实了卤化物偏析的形成和有效性。
制备的各种ASSLSBs在商业水平的面积容量下表现出接近100%的硫利用率和非凡的循环稳定性。
接近100%的硫利用率是什么概念?据了解,尽管固态电解质(SSEs)的室温离子电导率已取得进展,但电池性能仍受限于电极-SSE界面的电荷传输和化学机械稳定性。硫的电子和离子导电性差、体积膨胀大(约80%),导致循环后固-固界面的化学机械失效。目前改善ASSLSB电池性能的策略包括纳米结构主体、催化剂、添加剂、掺杂、原子层沉积涂层和新的SSE,这些方法仍然存在界面离子传输缓慢的问题,导致硫利用率低(≤80%)和循环寿命不足。
如今新的技术,解决了硫利用率低及循环寿命不足的问题。

图片新闻
最新活动更多
-
6月13日立即参评>> 【评选启动】维科杯·OFweek(第四届)2025汽车行业年度评选
-
即日-6.30免费下载>> 西门子数字化工业软件电池新国标合规方案
-
7.30-8.1火热报名中>> 全数会2025(第六届)机器人及智能工厂展
-
7.30-8.1预约参观>> 2025WAIE-光伏储能应用大会暨展览会
-
7月31日免费预约>> OFweek 2025具身机器人动力电池技术应用大会
-
免费参会立即报名>> 7月30日- 8月1日 2025全数会工业芯片与传感仪表展
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论